
www.manaraa.com

Research Article
Management of IoT Sensor Data Using a Fog Computing Node

Gunjae Yoon ,1 Donghwa Choi ,2 Jeongjin Lee ,2 and Hoon Choi 2

1Gurum Networks, Seoul, Republic of Korea
2Department of Computer Science & Engineering, Chungnam National University, Daejeon, Republic of Korea

Correspondence should be addressed to Hoon Choi; hc@cnu.ac.kr

Received 14 September 2018; Revised 10 December 2018; Accepted 24 December 2018; Published 19 February 2019

Academic Editor: Grigore Stamatescu

Copyright © 2019 Gunjae Yoon et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As IoT systems spread, transmissions of all data from various sensing devices to a remote OM (Operation andManagement) server
through the Internet can lead to many problems, such as an explosion of network traffic and delayed responses to data. Fog
computing is a good means of resolving these problems in an IoT system environment. In this paper, a management method for
sensor data in a fog computing node is proposed. The monitoring node monitors data from sensor devices using a data pattern
from the OM server, which dynamically generates and updates the pattern. The monitoring node reports only the data beyond
the normal range of the pattern to the OM server rather than sending all data to the OM server. The monitoring node can
control the operations of sensor devices remotely according to the requests of the OM server.

1. Introduction

Currently, the Internet of Things (IoT) [1] is used in intelli-
gent homes, smart buildings, factory automation systems,
intelligent transportation systems, and autonomous car
management systems. An IoT system consists of a number
of sensors, actuators, and computing nodes. Generally, these
leaf-node devices do not have enough computing resources
to supply intelligent services. Therefore, one or more servers
must undertake the processing, storing, and classifying of the
data. Though a server or a cluster of servers is able to process
all data generated by leaf-node devices, network problems
such as traffic explosions or delayed transmissions can occur
if the number of IoT systems increases. To alleviate these
problems, the concept of fog computing [2–5] has been
introduced. Fog computing does not store massive amounts
of data on a large data server; instead, the data is stored near
the data source. Fog computing has the advantage of mitigat-
ing network traffic that is concentrated on the server.

Traditional fog computing nodes simply performed
filtered data transmission using a filtering criterion provided
by a human administrator. A smart gateway [6] reduces the
communication overhead of the core network and reduces
the burden on the cloud. The human administrator of the
smart gateway must change the filtering criterion when

necessary. On the other hand, the system proposed in this
paper automatically establishes and updates the filtering cri-
terion without the administrator’s intervention. Adaptive
monitoring (AdaM) [7] refers to a framework that reduces
the volume of generated data as well as the network traffic
between IoT devices and data management endpoints. AdaM
uses both adaptive sampling and adaptive filtering algo-
rithms and dynamically adjusts the monitoring intensity
and the amount of data disseminated through the network
based on the current metric evolution. Unlike the monitoring
node proposed in this paper, AdaM runs on an IoT device
itself. Therefore, it can be applied to IoT nodes with certain
types of computing hardware. The cognitive IoT gateway
[8] is a type of fog node. The cognitive IoT gateway reduces
the network traffic between IoT devices and cloud servers
by migrating server applications to the gateway. It uses a
machine learning algorithm to determine where to execute
IoT applications between a fog node and a cloud server based
on hardware information pertaining to the gateway, such as
the CPU utilization, memory usage, and network bandwidth
values. The cognitive IoT gateway differs from the proposed
monitoring node in that it deals with the deployment of
applications. Research from another point of view suggests
a multi-core-based edge server type of architecture to
improve the performance of the edge (fog) computing. An

Hindawi
Journal of Sensors
Volume 2019, Article ID 5107457, 9 pages
https://doi.org/10.1155/2019/5107457

http://orcid.org/0000-0003-1234-2174
http://orcid.org/0000-0002-6455-7989
http://orcid.org/0000-0002-1084-0340
http://orcid.org/0000-0002-4435-3997
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5107457


www.manaraa.com

edge server which corresponds to a fog node is a server with
limited capabilities, though it must handle large amounts of
data in real time. Another study suggested the use of many
core systems to offer high-performance computing and cach-
ing services for these types of limited servers [9]. Using
many-core systems for each edge server can be costly in a
smaller IoT system. An edge-side company storage frame-
work was also proposed to store IoT data [10]. Edge servers
also usually have limited resources and small amounts of
storage. When an edge server lacks a storage space, the
edge-side company storage framework shares the storage of
other near-edge servers to avoid long delays when offloading
data to a cloud server. While the aforementioned study [10]
concerns the efficient management of the storage space, this
paper focuses on the data filtering issue.

A better means of reducing network traffic and the
server workloads in an IoT system environment was pro-
posed by the authors [11]. The filtering criteria in that study
are automatically generated by the OM server using raw
data from the sensor devices. The functional architecture
of the method is described but detailed schemes for the col-
lection, management, and transmission of sensor data are
not included.

This paper expands on the earlier work [11] and includes
a detailed communication scheme between monitoring
nodes and sensor devices, a method for the adaptive genera-
tion of data patterns and the monitoring of sensor data, and a
method by which abnormal data are transmitted to an OM
server in an IoT system environment. The implementation
of a prototype of an IoT system is undertaken to demonstrate
the feasibility of the proposed method and to measure the
response time of the fog node.

This paper proceeds as follows. Section 2 briefly intro-
duces the concept of fog computing and explains the pro-
posed operational process of our system. Section 3 describes
the functions of the monitoring node to support the opera-
tions presented in Section 2. After the implementation of
the prototype, the response time measurements and a discus-
sion of the traffic reductions which can be expected when
using this system are presented in Section 4. The concluding
remarks are given in Section 5.

2. Fog Computing

2.1. Architecture. Figure 1 shows a typical architecture of a
fog computing system, which has three hierarchical systems.
The monitoring nodes, also known as fog nodes, connect sev-
eral IoT systems to the OM server. A monitoring node is a
proxy of the OM server, and it manages the IoT system.
Sensed data generated by IoT devices are transmitted to
and processed by the monitoring node instead of the OM
server. The monitoring node manages received data and
reports only abnormal situations which arise to the OM
server. As a result, the network traffic and workload of the
OM server are reduced.

2.2. Proposed Operational Process. The aim of this study is to
provide the following operations to the IoT system using the
monitoring nodes of fog computing and the OM server. (1)

When a new sensor device is connected to the monitoring
node, the monitoring node recognizes it and reports it to
the OM server in real time. (2) The sensor device transmits
data to the connected monitoring node. The monitoring
node stores the data received from the sensor device. (3)
When the monitoring node receives the data in step (2), it
also checks whether a data pattern exists for this device. If a
data pattern does not exist, the monitoring node transmits
the received data to the OM server to generate a data pattern.
(4) The OM server acquires the data from the monitoring
node and generates a pattern for this specific sensor device,
which is a collection of sets of values and generation times
of data from the device. This pattern informs us of fluctua-
tions of normal data values with respect to the time of day.
(5) When a pattern is generated with sufficient data, such
as data collected over several hours, the OM server sends
the data pattern to the monitoring node. These operations
can be called the pattern generation process, and they are
depicted in Figure 2. We assume that an IoT device is con-
nected to only one monitoring node. One monitoring node
may have multiple IoT devices, and one OM server may have
multiple monitoring nodes.

After the data pattern is generated, monitoring opera-
tions can take place. (1) Sensor devices transmit data to the
monitoring node. The monitoring node stores the received
data. (2) The monitoring node also compares the IoT data
with the data patterns. (3) If the value lies within the accept-
able deviation range, steps (1) and (2) are repeated. This
range may be set by the administrator. For example, a 5%
range means that ±5% of the difference between the received
data value and the pattern value is accepted as a normal case.
(4) If the value is beyond the normal data pattern range, the
monitoring node records this in a log file. The monitoring
node takes a proper action to control this, and it also reports
this abnormal value to the OM server with the corresponding
time information. (5) The OM server recognizing the abnor-
mal situation can analyze the data and alert the administrator
or may reflect the data when updating the corresponding
data pattern. (6) The server may request the monitoring node
of the stored data in a specific time interval for operation and
management purposes.

The advantages of the proposed method compared to
other fog computing mechanisms include the fact that data
filtering is performed on a per-device basis given a data pat-
tern for each sensor device. Unlike other mechanisms, our
method does not require any human effort to provide data fil-
tering criteria (normal data patterns), and data patterns are
created systematically and provided by the server. The data
patterns can dynamically adapt to appropriate situations;
for example, different versions of data patterns can be made
with respect to the time of day or considering seasonal or
climate changes.

3. Management of Sensor Data in a
Monitoring Node

For the operations of the previous section, the monitoring
node was designed to have the functions shown in Figure 3.

2 Journal of Sensors



www.manaraa.com

3.1. Data Storage. The sensor devices of an IoT system can
generate data frequently or periodically. The data storage
component stores the data in a compressed form to reduce
the storage capacity. When unexpected or abnormal data is
received, the data storage component must keep logs for sys-
tem management and failure tracking.

The data storage component requires an efficient data
management scheme to prevent performance degradations.
The monitoring node manages data in a block by block man-
ner in order to improve the efficiency of data search and
transmission processes. A data set includes data values, iden-
tifiers of the device and sensor along with a timestamp to dis-
tinguish which IoT device generated the data as shown in
Figure 4. The data storage component also responds to
requests from the OM server. When the OM server requests

specific data or data generated during a given time interval,
this component searches for and retrieves the data from stor-
age and sends the data to the server.

3.2. Communication Management. This component trans-
mits data from/to IoT devices to/from the OM server. Each
IoT system can use different communication protocols, such
as Modbus [12], MQTT [13], or CoAP [14]. IoT systems can-
not be accessed by an OM server unless this protocol differ-
ence is resolved. By converting legacy communication
protocols between IoT devices and the monitoring node to
a common standard Internet protocol between the monitor-
ing nodes and OM servers, the monitoring node can connect
different IoT environments and therefore achieve scalability.
The Data Distribution Service (DDS) of the OMG (Object

Application
management

Fog
application

Fog platform

Security
management

Distributed
management Docker engine

Linux

Hardware platform

: Linux native image
: Docker image

Data
monitoring

Data storage
Device

connection
management

Communication management

DDS Protocol
interworking

MQTT
/CoAP

IoT
monitoring 

Figure 3: Functional architecture of the monitoring node.

IoT system A
Monitoring

node

No
data pattern

Data

Data
Data pattern
generation

Data
pattern

IoT system BNew

New Cloud

Pattern A
Pattern B

Save & send

Figure 2: Data pattern generation process.

IoT system

IoT system

Cloud

Monitoring
node

Monitoring
node

IoT system

Figure 1: Fog computing architecture.

3Journal of Sensors



www.manaraa.com

Management Group) [15, 16] can be used as the common
Internet-side protocol.

We explain the communication management component
with respect to theModbus protocol. TheModbus protocol is
a master/slave type communication protocol. The master
sends a request to the slave and waits for a response, and
the slave sends a response to the master (Figure 5). Typically,
Modbus includes the Modbus RTU based on serial commu-
nication and the Modbus TCP based on socket communica-
tion. We used the Modbus TCP in this research.

The Modbus TCP protocol sets up necessary information
(e.g., IP address and port number) for socket communication
and attempts to make a connection from the master to the
slave using the information.

After a connection is made, the master requests data from
the slave according to the Modbus frame format shown in
Figure 6, and the slave sends a response. Modbus defines
six function codes, as shown in Table 1, for requests to the
slave from the master.

We set the monitoring node as the master and each IoT
device as a slave. Figure 7 shows the message exchange dia-
gram. The monitoring node requests data from a slave by
sending a message with function code 4 to the IoT device,
and the IoT device transmits a response matching the
requested function code. The data in the reply from the IoT
system are sent to the data storage component via IPC
(Inter-Process Communication).

The communication management component uses DDS
to communicate with the OM server. Therefore, the monitor-
ing node converts legacy protocols to DDS to send IoT data
to the OM server. To support high flexibility in protocol con-
versions and adaptations to monitoring data updates, the
monitoring node applies DDS-XTYPES, which are extensible
types for DDS.

DDS represents data in a structure known as a topic.
Figure 8 shows the structure of a topic. Topics are composed
of a name and a type. A topic name refers to the identification
of data in a DDS domain network. The topic type informa-
tion also includes the type name and its data structure. The
type information must be defined before creating topics.

OMG defined the extensible types for DDS specifications
to make the topic creation and definition processes flexible.
Figure 9 shows the topic representations of DDS-XTYPES.
DDS-XTYPES specifies how to express the structure and
the attributes of a DDS topic. When DDS undertakes the
endpoint discovery process, the participating DomainParti-
cipant can forward the structure information, expressed in
the DDS-XTYPES form, of the endpoint discovery messages.

When DDS DomainParticipant receives endpoint discovery
messages including DDS-XTYPES information, the Domain-
Participant can understand and use the topic even if the infor-
mation of the topic was unknown to the DomainParticipant.

The proposed communication technique can undertake
flexible communication and monitoring using DDS-
XTYPES. In order to apply DDS-XTYPES, the monitoring
node must know the type of data transmitted by a legacy
protocol. The monitoring node has IDL (Interface Definition
Language) files representing these data structures, and the
node converts IoT data to a DDS topic using the IDL infor-
mation. These IDL files are written by device manufacturers
and are downloaded from the OM server. When the IDL
information or topics are updated, these changes are propa-
gated through DDS’s endpoint discovery processes with
DDS-XTYPES. Examples of such cases include those when
existing monitoring information is changed or when new
monitoring information is added by a new sensor node or
a monitoring system. Due to these DDS propagation pro-
cesses, the monitoring nodes and OM servers can adapt to
these changes during runtime without any modification or
compilation processes.

3.3. IoT Monitoring. This component monitors the connec-
tion states and operational states of connected IoT devices.
An IoT device may fail or may sometimes be detached. If
the communication channel between the device and the
monitoring node is unreliable, communication may fail.
The monitoring node continuously checks the state of the
channel and the device when possible.

The monitoring node attempts to collect the device infor-
mation of each IoT device, such as the manufacturer/model
name, hardware information, address, and other parameters.
If this profile information is embedded in the device and if
the communication protocol between the device and the
monitoring node is capable of delivering the profile, the
monitoring node can obtain the device information. For
example, when a new IoT device is plugged into the IoT

Master

Slave

Response
Request

Response

Request

Slave

Figure 5: Communication topology of Modbus.

Data storage Data block

: Data block

Device ID Sensor ID Data instance Time

Device ID Sensor ID Data instance Time

Device ID Sensor ID Data instance Time

Device ID Sensor ID Data instance Time

Device ID Sensor ID Data instance Time

Log

Figure 4: Data block structure.

4 Journal of Sensors



www.manaraa.com

system, this component of the monitoring node may auto-
matically detect the device type and status. It then reports this
information to the OM server in real time.

The device is also controllable through the monitoring
node if necessary. This IoT monitoring component controls
the IoT device by transferring messages with function code
5 and the device ID and sensor ID to the slave, as described
in Figure 6. For example, if the monitoring node recognizes
that the value of a temperature sensor exceeds a certain
threshold after reading the temperature, the monitoring node
turns on the air conditioner by transmitting the message with
the function code “Write” and changing the registry value
controlling the air conditioning power of the IoT device.

3.4. Data Monitoring. This component analyzes the collected
data. The monitoring node receives the data pattern from the
OM server to judge the normality of the received data. The
data storage component saves the data received from a sen-
sor. The values of the received data are then compared with
the data pattern. If the data is not in the normal range, the
monitoring node records this in a log file and reports the
occurrence of abnormal data to the OM server. An example
of such a pattern is given in Table 2.

The OM server generates a data pattern for the monitor-
ing node to detect abnormal data from IoT devices. There are
many technologies for generating patterns, but a simple
primitive method is used as the initial first trial. As shown
in Figure 10, the OM server divides 24 hours into 144 sec-
tions of ten-minute periods and calculates the average of
the sensor data values collected from the monitoring node
during each time section. The OM server maintains the
sequence of the average values as the data pattern for a spe-
cific IoT device.

The OM server sends the generated data pattern to the
monitoring server by putting in a DDS topic, as shown in
Figure 11.

The OM server must update the data pattern to adapt to
change of normal values due to environmental issues, such as
seasonality changes. The monitoring node reports to the OM

server when a value beyond the acceptable deviation range is
received or when data are continuously received from a
device whose values are close to the maximum/minimum
range of the data pattern.

Figure 12 is a diagram showing a data pattern of a sensor
device. Data values within the range of section (a) are
regarded as normal; hence, the monitoring node stores the
data in this case without further action. Data values in section
(b) are also regarded normal, and the monitoring node stores
the data. In this case, the frequency of data of section (b) is
also counted, and the monitoring node requests an update
of the data pattern if the frequency is high. Because the data
in section (c) exceeds the normal range, the monitoring node
transmits the data to the OM server.

The OM server is able to reconfigure the monitoring of
IoT systems by updating the data patterns of IoT devices
and downloading them onto the monitoring node. The mon-
itoring node uses the Docker platform, which allows the node
to install new software onto the monitoring node. For exam-
ple, the monitoring node can download and install a new
algorithm to detect abnormal data from the OM server.

4. Performance Evaluation

We implemented a prototype system to demonstrate the
feasibility of the monitoring node in this study. The middle
part in Figure 13 represents the sensors and an actuator. A
DHT-22 temperature-humidity sensor, an IR sensor, an
MQ-135 gas sensor, and a small fan are used with Arduino.
We used an Apple MacBook Pro 2017 (Intel dual-core
i5-7360u, 3.1GHz) for the monitoring node and a Giga-
byte AERO (i7-7700HQ, 2.8GHz, Ubuntu 18.04) for the
OM server.

Advantages of the proposed monitoring node include the
fact that the monitoring node can control IoT devices more
quickly than the OM server and the monitoring node can
reduce network traffic.

First, we show how quickly the monitoring node con-
trols IoT devices. We positioned a heat source near the

<Modbus TCP>
MBAP header Function code Data

Transaction ID Protocol ID Length Unit ID

Figure 6: Modbus TCP frame structure.

Table 1: Modbus function code.

Function type Function name Function code

Data access

Bit access

Read discrete inputs 2

Read coils 1

Write single coil 5

16-bit (word) access

Read input register 4

Read holding registers 3

Write single register 6

5Journal of Sensors



www.manaraa.com

temperature-humidity sensor on purpose and measured
the response time, i.e., the delay from the time the IoT
device, Arduino, sends the measured high-temperature
value to the monitoring node up until the time the Ardu-
ino device receives a control message to turn on the fan
from the monitoring node. The average of 36 measure-
ments was found to be 30.220 milliseconds. If the moni-
toring node is not used, the sensed value is sent to the
remote OM server and the server sends back a control
message. The server’s response time will approximate the
monitoring node’s response time plus the network round-
trip delay. The network delay to the OM server depends
on the distance and the number of router hops from the
IoT system to the OM server. In this experiment, we used

IoT system (slave 1) IoT system (slave 2) CM (master) Data storage Cloud

Connect (slave1)SYN

SYN,ACK

ACKAccept()

Request (FC = 4, read_address = 0)

Response (FC = 4, data = 25) Send(device ID, sensor ID, data = 25, time)

Save()

Send (result)SYN
Connect (slave2)

ACKAccept ()

Request (FC = 4, read_address = 10)

Response (FC = 4, Data = 31)Send (device ID, sensor ID, data = 31, time)

Save ()

Send (result)

DDS publish/subscribe

Close (slave1)
ACK of FIN

FIN

FINClose (master)

ACK of FIN
FIN Close (slave2)

ACK of FIN

Close (master)

ACK of FIN

FIN

SYN,ACK

Figure 7: Modbus connection configuration and information transfer procedure. CM: communication management; FC: function code.

Topic name: foo

Type name: Sensor

struct Sensor{
@key
long type_id;

temp;float
hum;float

}

Figure 8: DDS type composition.

6 Journal of Sensors



www.manaraa.com

the average roundtrip delay of the North America region,
which is 36.737 milliseconds [17].

As shown in Table 3, the response time of the monitoring
node is shorter than that of the cloud server. If we consider
the heavy workload at the server due to the considerable

amount of traffic from many IoT devices, the server’s
response may become even slower.

We performed a simple evaluation to depict the second
advantage of the monitoring node. Figure 14 shows the
shapes of the network traffic changes. From times 0 to T1,

Type
representation

Language
binding

Data
representation

IDL:
Sensor.idl

struct Sensor {
@key

type_id;long
temp;float
hum;float

}

IDL to Language 
mapping:
Sensor.h, Sensor.c
SensorTypeSupport.c

type_id;long
temp;float
hum;float

struct Sensor {

};

Foo f = {183, 36.4, 0.5};

IDL to CDR:

0000 00B7
4211 999A
3F00 0000

Figure 9: Topic representation of DDS-XTYPES.

Table 2: An example of a data pattern for an IoT device.

Date Time Mean normal value Acceptable deviation

2018-01-01 12:00:00 20.05 5%

2018-01-01 12:00:30 20.05 5%

2018-01-01 12:01:00 21.00 5%

2018-01-01 12:01:30 21.00 5%

: : : :

2018-01-01 00:00:30

2018-01-01 00:01:00

2018-01-01 00:09:30

2018-01-01 00:10:00

24.00

24.50

24.00

23.00

2018-01-01 00:10:30

2018-01-01 00:11:00

2018-01-01 00:19:30

2018-01-01 00:20:00

24.00

24.00

25.00

24.50

Compute the average of
20 sensor values

collected during 10 min. 

2018-01-01 23:50:30

2018-01-01 23:51:00

2018-01-01 23:59:30

2018-01-01 24:00:00

20.00

21.00

19.50

20.00

Compute the average of
20 sensor values 

1

2

1
4
4

Time Value

Sensor data collected
every 30 sec.

First 10-min.
time section

Second
10-min.

time section

144th 10-min.
time section

… …

… …

… …

…

Figure 10: 144 sections of data.

7Journal of Sensors



www.manaraa.com

the monitoring node discovers a new sensor device and
establishes a connection with it. Upon reaching time T1,
the discovering and connecting processes end. From times
T1 to T2, the monitoring node transmits all of the data to
the OM server on the Internet because the monitoring node
does not yet have a data pattern for this device. Therefore,
the network traffic reaches its maximum level, and the work-
load of the OM server is high. During this period, the OM
server learns and generates a pattern from the received data.
At time T2, the OM server completes the generation of the
data pattern and sends it to the monitoring node. At time
T3, the monitoring node receives and installs the data pat-
tern, after which it begins to detect an abnormality. The
monitoring node reports only abnormal data to the OM
server after T3.

Network traffic arises in proportion to the assumed error
rate, which is the rate of the occurrence of abnormal data
from some sensor device. We simulated different error rates
and calculated the corresponding traffic rates. If we assume
an error rate of 0.5, half of the received data is normal and
is not sent to the OM server after T3. With an error rate of
0.2, we do not need to send 80% of the data to the OM server.
Therefore, the proposed method can decrease the network
traffic considerably. In a typical IoT system without a moni-
toring node, all of the sensor data are directly sent to the OM
server; the network traffic ratio will always be 1 after T1.

The values of traffic rates during 0~T1 and T2~T3 were
set to certain intermediate values simply to show a gradual
increase/decrease during these transient time spans. The pur-
pose of this graph is to show the differences in the traffic rates
during the T1~T2 time span and the time span after T3.

5. Conclusion

The purpose of the monitoring node in this paper is to con-
trol IoT devices quickly and to reduce network traffic and
the server’s workload in the IoT system environment. The
monitoring of the normality of data from each sensor
device is based on the corresponding data pattern provided
by the OM server. The monitoring node with the data pat-
terns reports only the data outside of the normal data range
to the OM server rather than sending all the data to the
OM server.

Topic name: Data pattern

Type name: Temperature Sensor

Struct Sensor{
long Device_id;
long Sensor_id;
float temp[144];

}

Figure 11: Topic for a data pattern.

0 24 hours

Representative value

Representative value +3%
Representative value +5% a

b

c

c

b

Value

Representative value −3%
Representative value −5%

a

Figure 12: Comparison of received data with the data pattern.

Figure 13: A prototype implementation of a monitoring node and
an IoT system.

Error rate (0.5)
Error rate (0.4)
Error rate (0.3)

Error rate (0.2)
Error rate (0.1)

1.2

1.0

0.8

0.6

0.4

0.2

0.0
T1 T3

Time

N
et

w
or

k 
tra

ffi
c r

at
io

T2

Figure 14: Network traffic reduction over time.

Table 3: Comparison of response times (unit: ms).

Average response time of the
monitoring node

30.220

Average response time of the
cloud server

30 220 + 36 737 = 66 957

8 Journal of Sensors



www.manaraa.com

Generating a proper data pattern is an important subject.
The OM server adaptively generates data patterns and pro-
vides them to the monitoring nodes for each sensor device.
Data patterns should be generated from a large set of data
collected by each sensor device. Though we described a sim-
ple method of pattern generation, we can improve it further.
It can be replaced by another method, such as one based on a
deep learning technique.

Other future research subjects may include a quick
method to detect abnormal sensor values at the monitoring
node. The capability of the monitoring node can be further
extended to search and download the profile information of
IoT devices from an external server such as the OM server
or the manufacturer’s server. Performance evaluations of
the fog computing with IoT systems on a larger scale are
also challenging.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Disclosure

The funding sponsors had no role in the design of the study,
in the collection, analyses, or interpretation of the data, in
the writing of the manuscript, and in the decision to publish
the results.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

G. Yoon and D. Choi equally contributed to this work.

Acknowledgments

This work was supported by the National Research Founda-
tion of Korea grant funded by the Korean government, MSIT
(No. NRF-2017R1D1A1B03029262). D. Choi was partly
supported by Korea Electric Power Corporation (Grant
number: R18XA05).

References

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of things (IoT): a vision, architectural elements, and future
directions,” Future Generation Computer Systems, vol. 29,
no. 7, pp. 1645–1660, 2013.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the Internet of things,” in Proceedings of the first
edition of the MCC workshop on Mobile cloud computing,
ACM, pp. 13–16, Helsinki, Finland, 2012.

[3] K. Toczé and S. Nadjm-Tehrani, “A taxonomy for manage-
ment and optimization of multiple resources in edge comput-
ing,” Wireless Communications and Mobile Computing,
vol. 2018, Article ID 7476201, 23 pages, 2018.

[4] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, and
C. Mahmoudi, “Fog computing conceptual model,” Tech. Rep.

500-325, NIST (National Institute of Standards and Technol-
ogy), 2018, November 2018, https://www.nist.gov/
publications/fog-computing-conceptual-model.

[5] A. Paul, H. Pinjari, W.-H. Hong, H. C. Seo, and S. Rho, “Fog
computing-based IoT for health monitoring system,” Journal
of Sensors, vol. 2018, Article ID 1386470, 7 pages, 2018.

[6] M. Aazam and E.-N. Huh, “Fog computing and smart gateway
based communication for cloud of things,” in Future Internet
of Things and Cloud (FiCloud), 2014 International Conference,
pp. 464–470, Barcelona, Spain, 2014.

[7] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “AdaM: an adap-
tive monitoring framework for sampling and filtering on IoT
devices,” in 2015 IEEE International Conference on Big Data
(Big Data), pp. 717–726, Santa Clara, CA, USA, 2015.

[8] F. Jalali, O. J. Smith, T. Lynar, and F. Suits, “Cognitive IoT
gateways: automatic task sharing and switching between
cloud and edge/fog computing,” in SIGCOMM Posters and
Demos '17 Proceedings of the SIGCOMM Posters and Demos,
pp. 121–123, Los Angeles, CA, USA, 2017.

[9] S.-J. C. Ramneek, S. H. Jeon, Y. J. Jeong, J. M. Kim, S. Jung, and
S. Pack, “Boosting edge computing performance through
heterogeneous manycore systems,” in 2018 International Con-
ference on Information and Communication Technology Con-
vergence (ICTC), pp. 922–924, Jeju, South Korea, 2018.

[10] Y. Li, J. Luo, J. Jin, R. Xiong, and F. Dong, “An effective model
for edge-side collaborative storage in data-intensive edge com-
puting,” in 2018 IEEE 22nd International Conference on Com-
puter Supported Cooperative Work in Design ((CSCWD)),
pp. 92–97, Nanjing, China, 2018.

[11] J. Lee, G. Yoon, and H. Choi, “Monitoring of IoT data for
reducing network traffic,” in 2018 Tenth International Confer-
ence on Ubiquitous and Future Networks (ICUFN), pp. 395–
397, Prague, Czech Republic, 2018.

[12] Modicon, Inc., “Modicon Modbus Protocol Reference Guide,
PI-MBUS-300 Rev. J,” 1996, http://modbus.org/docs/PI_
MBUS_300.pdf.

[13] S.-J. Kim, K.-W. Cho, M.-E. Lee, and O. Chang-Heon, “A
study on adaptive QoS control system based on MQTT for
reducing network traffic,” International Conference on Future
Information & Communication Engineering, vol. 9, no. 1,
pp. 223–226, 2017.

[14] Z. Shelby, K. Hartke, and C. Bormann, The Constrained
Application Protocol (CoAP), Internet Engineering Task Force
(IETF), 2014.

[15] Object Management Group (OMG), Data Distribution Service
for Real-Time Systems, Version 1.2, Object Management
Group (OMG), 2007.

[16] Object Management Group (OMG), The Real-time
Publish-Subscribe Wire Protocol DDS Interoperability Wire
Protocol, Version 2.1, Object Management Group (OMG),
2009.

[17] Verizon Digital Media Services, Inc, IP Latency Statistics,
December 2018, https://enterprise.verizon.com/terms/latency/.

9Journal of Sensors

https://www.nist.gov/publications/fog-computing-conceptual-model
https://www.nist.gov/publications/fog-computing-conceptual-model
http://modbus.org/docs/PI_MBUS_300.pdf
http://modbus.org/docs/PI_MBUS_300.pdf
https://enterprise.verizon.com/terms/latency/


www.manaraa.com

Copyright © 2019 Gunjae Yoon et al. This is an open access article
distributed under the Creative Commons Attribution License (the “License”),
which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited. Notwithstanding the ProQuest
Terms and Conditions, you may use this content in accordance with the terms

of the License. http://creativecommons.org/licenses/by/4.0/


	Management of IoT Sensor Data Using a Fog Computing Node
	1. Introduction
	2. Fog Computing
	2.1. Architecture
	2.2. Proposed Operational Process

	3. Management of Sensor Data in a Monitoring Node
	3.1. Data Storage
	3.2. Communication Management
	3.3. IoT Monitoring
	3.4. Data Monitoring

	4. Performance Evaluation
	5. Conclusion
	Data Availability
	Disclosure
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

